
BACKTALK

January/February 2010 www.stsc.hill.af.mil 39

After 12 years in the software industry, I recently returned to
teaching. I enjoy it immensely, and especially enjoy teaching

the “Intro to Computer Science Principles.” I find it refreshing to
give students their first taste of computer science. I am always
amused by their initial first attempts at programming. Just like
watching a newborn calf take its first
teetering steps, watching a “new
mind” learn to write programs is
both rewarding and entertaining.

In my graduate courses, however,
I expect a somewhat higher standard.
I am pretty strict about expecting my
students to follow “good” program-
ming practices—good documenta-
tion, readable code, etc. My standards
are pretty high, and once the students
learn what I expect, they eventually
see how clear, easy-to-read code
makes debugging and maintenance
easier (either that, or they humor me
until the end of the semester, after
grades have been assigned).

In a recent grad class, I was lec-
turing on some subtle point of oper-
ating systems. I was using Unix as an
example, and I had pulled up an
example of Unix network code from
a handy reference manual. As my
class was going over the example,
several of the students were shocked
by some of the “poor” code used in
the operating system. Poorly docu-
mented. Bad variable names.
Heavens, even global variables! A
couple of the students pointed out
that I would have quickly given them
a grade of zero for writing code like
that.

My response to them involved the
International Obfuscated C Code
Contest (IOCCC). The purpose of
this contest is to award to most cre-
atively obfuscated code (where
obfuscated means to make things as
confusing or difficult to understand
as possible). A quick example, in the
sidebar, is the code that will generate
the entire 12 verses of The 12 Days of Christmas. No mis-
prints—I compiled and checked it to make sure! See
<http://en.wikipedia.org/wiki/Obfuscated_code>. At first
glance, it looks like the random typing of a drunken cat as it trods
across the keyboard.

Why do we celebrate poorly written code? Mostly, of course,
for the humor. According to the IOCCC Web site
<www1.us.ioccc.org/main.html>, it “shows the importance of
programming style, in an ironic way.”

In the IOCCC, I am sure that every one of the entries was
written by an expert coder. They already know how to write very

good code—and this contest is a safe forum poking fun at them-
selves. If my students wrote code like this? First of all, they
would never be able to debug it, so grading would be much sim-
pler. And I could always hope for a hammer to spring from a key-
board and crack a knuckle if a student tries to write such code. I

teach my students to follow the rules,
because it allows me to hold them to a
standard. However, an experienced
programmer who understands the sys-
tem can safely break a few rules—as
long as their experience allows them to
do it safely. There are exceptions to
every rule, and an expert knows when
it’s safe to break a rule. But you have to
understand the processes before you
start breaking them.

One reason I love the CMM/CMMI
is the emphasis on “repeatable process-
es.” A long time ago, I had a friend try
and teach me how to golf. He said I
was a perfect student—I consistently
made the same mistakes over and over
(and over and ...). It’s easy to fix a prob-
lem when the problem is repeatable.

When designing software, you need
to be able to understand a flawed
process—and make it better. In soft-
ware engineering, I teach about heisen-
bugs (named after the Heisenberg
Uncertainly Principle) and bohrbugs
(named after the well-defined Bohr
atom model) which are bugs that are
respectively difficult to reproduce and
easy to reproduce. A heisenbug can’t be
reliably duplicated, so it’s very hard to
find and fix. A bohrbug, however, can
be reliably reproduced, making it some-
what easy (or at least easier) to trace
and fix.

A process model allows you to cre-
ate bohrbugs rather than heisenbugs.
While I’m not saying it is perfectly OK
to create mistakes, I AM saying that if
you want to improve your process, you
have to at least screw up in a repeatable,
predictable manner. And be willing to
improve. And promise to NEVER

write code like the 12 Days program.

—David A. Cook, Ph.D.
Stephen F. Austin State University

cookda@sfasu.edu

Software Processes? How Bohring!

How Not to Write Code
12days.c

#include <stdio.h>
main(t,_,a)char
*a;{return!0<t?t<3?main(-79,-
13,a+main(-87,1-_,
main(-
86,0,a+1)+a)):1,t<_?main(t+1,_,a):3,mai
n(-94,-27+t,a)&&t==2?_<13?
main(2,_+1,”%s %d %d\n”):9:16:t<0?t<-
72?main(_,t,
“@n’+,#’/*{}w+/w#cdnr/+,{}r/*de}+,/*{*+
,/w{%+,/w#q#n+,/#{l,+,/n{n+,/+#n+,/#\
;#q#n+,/+k#;*+,/’r :’d*’3,}{w+K
w’K:’+}e#’;dq#’l \
q#’+d’K#!/+k#;q#’r}eKK#}w’r}eKK{nl]’/#;
#q#n’){)#}w’){){nl]’/+#n’;d}rw’ i;# \
){nl]!/n{n#’; r{#w’r nc{nl]’/#{l,+’K
{rw’ iK{;[{nl]’/w#q#n’wk nw’ \
iwk{KK{nl]!/w{%’l##w#’ i;
:{nl]’/*{q#’ld;r’}{nlwb!/*de}’c \
;;{nl’-
{}rw]’/+,}##’*}#nc,’,#nw]’/+kd’+e}+;#’r
dq#w! nr’/ ‘) }+}{rl#’{n’ ‘)# \
}’+}##(!!/”)
:t<-50?_==*a?putchar(31[a]):main(-
65,_,a+1):main((*a==’/’)+t,_,a+1)
:0<t?main(2,2,”%s”):*a==’/’||main(0,mai
n(-61,*a,
“!ek;dc i@bK’(q)-
[w]*%n+r3#l,{}:\nuwloca-O;m
.vpbks,fxntdCeghiry”),a+1);}.vpbks,fxnt
dCeghiry”),a+1);}

